Search results for "LASER COOLING"

showing 10 items of 40 documents

A New Experiment for the Measurement of the g-Factors of 3He+ and 3He2+.

2018

We describe a new experiment that aims at a parts per billion measurement of the nuclear magnetic moment of 3He2+ and a 100 parts per trillion measurement of the Zeeman effect of the ground-state hyperfine splitting of 3He+. To enable ultrafast and efficient experiment cycles the experiment relies on new technologies such as sympathetic laser cooling of single 3He-ions coupled to a cloud of Doppler-cooled 9Be-ions in a Penning trap or a novel spin-state detection scheme.

0301 basic medicinePhysicsHistoryZeeman effectPenning trap01 natural sciencesComputer Science ApplicationsEducation03 medical and health sciencessymbols.namesake030104 developmental biologyLaser coolingTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesNuclear magnetic momentsymbolsPhysics::Atomic PhysicsAtomic physicsPräzisionsexperimente - Abteilung Blaum010306 general physicsUltrashort pulseHyperfine structure
researchProduct

Space-borne Bose–Einstein condensation for precision interferometry

2018

Space offers virtually unlimited free-fall in gravity. Bose-Einstein condensation (BEC) enables ineffable low kinetic energies corresponding to pico- or even femtokelvins. The combination of both features makes atom interferometers with unprecedented sensitivity for inertial forces possible and opens a new era for quantum gas experiments. On January 23, 2017, we created Bose-Einstein condensates in space on the sounding rocket mission MAIUS-1 and conducted 110 experiments central to matter-wave interferometry. In particular, we have explored laser cooling and trapping in the presence of large accelerations as experienced during launch, and have studied the evolution, manipulation and interf…

Atomic Physics (physics.atom-ph)FOS: Physical sciencesSpace (mathematics)01 natural sciencesPhysics - Atomic Physicslaw.invention010309 opticslawLaser cooling0103 physical sciencesAstronomical interferometer010306 general physicsQuantumCondensed Matter::Quantum GasesPhysicsMultidisciplinaryBragg's lawinterferometryBose-EinsteinComputational physicsInterferometryQuantum Gases (cond-mat.quant-gas)QuasiparticleAtomic physicsCondensed Matter - Quantum GasesBose–Einstein condensateNature
researchProduct

Noise correlations of the ultracold Fermi gas in an optical lattice

2008

In this paper we study the density noise correlations of the two component Fermi gas in optical lattices. Three different type of phases, the BCS-state (Bardeen, Cooper, and Schieffer), the FFLO-state (Fulde, Ferrel, Larkin, and Ovchinnikov), and BP (breach pair) state, are considered. We show how these states differ in their noise correlations. The noise correlations are calculated not only at zero temperature, but also at non-zero temperatures paying particular attention to how much the finite temperature effects might complicate the detection of different phases. Since one-dimensional systems have been shown to be very promising candidates to observe FFLO states, we apply our results als…

ComputationFOS: Physical sciencesradiation pressure01 natural sciences010305 fluids & plasmaslaser coolingfermion systemsLattice (order)Laser coolingQuantum mechanicsCondensed Matter::Superconductivity0103 physical sciencesoptical lattices010306 general physicsPhysicsCondensed Matter::Quantum GasesOptical latticeCondensed matter physicsBCS theoryBCS theoryAtomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterRadiation pressureQuasiparticleFermi gasOther Condensed Matter (cond-mat.other)
researchProduct

Design of a compact diode laser system for dual-species atom interferometry with rubidium and potassium in space

2017

We report on a micro-integrated high power diode laser based system for the MAIUS II/III missions. The laser system features fiber coupled and frequency stabilized external cavity diode lasers (ECDL) for laser cooling, Bose-Einstein condensate (BEC) generation and dual species atom interferometry with rubidium and potassium on board a sounding rocket.

Condensed Matter::Quantum GasesAtom interferometerMaterials scienceSounding rocketbusiness.industryPotassiumPhysics::Opticschemistry.chemical_elementLaser01 natural scienceslaw.inventionRubidium010309 opticschemistrylawLaser cooling0103 physical sciencesOptoelectronicsPhysics::Atomic Physics010306 general physicsbusinessBose–Einstein condensateDiode2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)
researchProduct

Extraction dynamics of electrons from magneto-optically trapped atoms

2017

Pulsed photoionization of laser-cooled atoms in a magneto-optical trap (MOT) has the potential to create cold electron beams of few meV bandwidths and few ps pulse lengths. Such a source would be highly attractive for the study of fast low-energy processes like coherent phonon excitation. To study the suitability of MOT-based sources for the production of simultaneously cold and fast electrons, we study the photoionization dynamics of trapped Cs atoms. A momentum-microscope-like setup with a delay-line detector allows for the simultaneous measurement of spatial and temporal electron distributions. The measured patterns are complex, due to the Lorentz force inducing spiral trajectories. Ray-…

Condensed Matter::Quantum GasesPhysics and Astronomy (miscellaneous)PhononChemistry02 engineering and technologyElectronPhotoionization021001 nanoscience & nanotechnology01 natural sciencesPhotoexcitationsymbols.namesakeLaser cooling0103 physical sciencessymbolsPhysics::Atomic PhysicsAtomic physics010306 general physics0210 nano-technologyLorentz forceExcitationBeam (structure)Applied Physics Letters
researchProduct

Ultracold atoms in optical lattices

2007

This article focuses on the characteristics and properties ultracold atoms in optical lattices.

Condensed Matter::Quantum GasesPhysicsCondensed Matter::OtherHigh Energy Physics::LatticePhysics::OpticsQuantum entanglementQuantum information processinglaw.inventionUltracold atomlawLaser coolingAtom opticsStatistical analysisPhysics::Atomic PhysicsAtomic physicsBose–Einstein condensateQuantum computer2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference
researchProduct

Entangled states of trapped ions allow measuring the magnetic field gradient produced by a single atomic spin

2012

Using trapped ions in an entangled state we propose detecting a magnetic dipole of a single atom at distance of a few $\mu$m. This requires a measurement of the magnetic field gradient at a level of about 10$^{-13}$ Tesla/$\mu$m. We discuss applications e.g. in determining a wide variation of ionic magnetic moments, for investigating the magnetic substructure of ions with a level structure not accessible for optical cooling and detection,and for studying exotic or rare ions, and molecular ions. The scheme may also be used for measureing spin imbalances of neutral atoms or atomic ensembles trapped by optical dipole forces. As the proposed method relies on techniques well established in ion t…

Condensed Matter::Quantum GasesPhysicsQuantum PhysicsMagnetic momentEnergetic neutral atomAtomic Physics (physics.atom-ph)FOS: Physical sciencesGeneral Physics and AstronomyPhysics - Atomic PhysicsIonDipoleLaser coolingAtomPhysics::Atomic PhysicsIon trapAtomic physicsQuantum Physics (quant-ph)Spin (physics)EPL (Europhysics Letters)
researchProduct

Focus on atom optics and its applications

2010

Atom optics employs the modern techniques of quantum optics and laser cooling to enable applications which often outperform current standard technologies. Atomic matter wave interferometers allow for ultra-precise sensors; metrology and clocks are pushed to an extraordinary accuracy of 17 digits using single atoms. Miniaturization and integration are driven forward for both atomic clocks and atom optical circuits. With the miniaturization of information-storage and -processing devices, the scale of single atoms is approached in solid state devices, where the laws of quantum physics lead to novel, advantageous features and functionalities. An upcoming branch of atom optics is the control of …

Condensed Matter::Quantum GasesQuantum opticsPhysicsQuantum opticsDDC 530 / PhysicsGeneral Physics and AstronomyAtomic clockIonLaser coolingAtomPhysics::Atomic and Molecular ClustersAtom opticsMiniaturizationddc:530Physics::Atomic PhysicsMatter waveAtomic physicsQuantenoptik
researchProduct

Interacting Rubidium and Caesium Atoms

2007

Binary mixtures of ultracold atoms are of great interest in the research field of quantum optics and are studied by several groups aiming at different applications. This paper works with rubidium and caesium, which are simultaneously stored in a magnetic trap. Species-selective microwave cooling is used on the rubidium groundstate hyperfine transition. Caesium is sympathetically cooled via elastic collisions with rubidium. When cooling down the mixture to temperatures below 1 muK, below 4 muK we observe strong losses of caesium. Analysing the dynamics of sympathetic cooling, lower limit for the modulus of the rubidium-caesium triplet s-wave scattering length is estimated.

Condensed Matter::Quantum GasesSympathetic coolingMaterials sciencechemistry.chemical_elementRubidiumchemistryUltracold atomMagnetic trapLaser coolingCaesiumPhysics::Atomic and Molecular ClustersAtom opticsPhysics::Atomic PhysicsAtomic physicsHyperfine structure2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference
researchProduct

Spin-orbit, radial, and angular coupling effects in the NaRb excited states

2009

Spin-orbit, radial, and angular nonadiabatic matrix elements between the lowest excited states of NaRb are evaluated by quasi-relativistic ab initio methods, and the results accompanied by potential curves, permanent and transition moments are compared with experimental data and preceding calculations.

CouplingPhysicsAb initio quantum chemistry methodsElectric fieldExcited stateLaser coolingOrbit (dynamics)Ab initioPhysics::Atomic PhysicsPhysics::Chemical PhysicsAtomic physicsSpin (physics)
researchProduct